1.8=16x+(0.5)(9.8)(x^2)

Simple and best practice solution for 1.8=16x+(0.5)(9.8)(x^2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1.8=16x+(0.5)(9.8)(x^2) equation:


Simplifying
1.8 = 16x + (0.5)(9.8)(x2)

Multiply 0.5 * 9.8
1.8 = 16x + 4.9x2

Solving
1.8 = 16x + 4.9x2

Solving for variable 'x'.

Reorder the terms:
1.8 + -16x + -4.9x2 = 16x + -16x + 4.9x2 + -4.9x2

Combine like terms: 16x + -16x = 0
1.8 + -16x + -4.9x2 = 0 + 4.9x2 + -4.9x2
1.8 + -16x + -4.9x2 = 4.9x2 + -4.9x2

Combine like terms: 4.9x2 + -4.9x2 = 0.0
1.8 + -16x + -4.9x2 = 0.0

Begin completing the square.  Divide all terms by
-4.9 the coefficient of the squared term: 

Divide each side by '-4.9'.
-0.3673469388 + 3.265306122x + x2 = 0

Move the constant term to the right:

Add '0.3673469388' to each side of the equation.
-0.3673469388 + 3.265306122x + 0.3673469388 + x2 = 0 + 0.3673469388

Reorder the terms:
-0.3673469388 + 0.3673469388 + 3.265306122x + x2 = 0 + 0.3673469388

Combine like terms: -0.3673469388 + 0.3673469388 = 0.0000000000
0.0000000000 + 3.265306122x + x2 = 0 + 0.3673469388
3.265306122x + x2 = 0 + 0.3673469388

Combine like terms: 0 + 0.3673469388 = 0.3673469388
3.265306122x + x2 = 0.3673469388

The x term is 3.265306122x.  Take half its coefficient (1.632653061).
Square it (2.665556018) and add it to both sides.

Add '2.665556018' to each side of the equation.
3.265306122x + 2.665556018 + x2 = 0.3673469388 + 2.665556018

Reorder the terms:
2.665556018 + 3.265306122x + x2 = 0.3673469388 + 2.665556018

Combine like terms: 0.3673469388 + 2.665556018 = 3.0329029568
2.665556018 + 3.265306122x + x2 = 3.0329029568

Factor a perfect square on the left side:
(x + 1.632653061)(x + 1.632653061) = 3.0329029568

Calculate the square root of the right side: 1.741523171

Break this problem into two subproblems by setting 
(x + 1.632653061) equal to 1.741523171 and -1.741523171.

Subproblem 1

x + 1.632653061 = 1.741523171 Simplifying x + 1.632653061 = 1.741523171 Reorder the terms: 1.632653061 + x = 1.741523171 Solving 1.632653061 + x = 1.741523171 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.632653061' to each side of the equation. 1.632653061 + -1.632653061 + x = 1.741523171 + -1.632653061 Combine like terms: 1.632653061 + -1.632653061 = 0.000000000 0.000000000 + x = 1.741523171 + -1.632653061 x = 1.741523171 + -1.632653061 Combine like terms: 1.741523171 + -1.632653061 = 0.10887011 x = 0.10887011 Simplifying x = 0.10887011

Subproblem 2

x + 1.632653061 = -1.741523171 Simplifying x + 1.632653061 = -1.741523171 Reorder the terms: 1.632653061 + x = -1.741523171 Solving 1.632653061 + x = -1.741523171 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.632653061' to each side of the equation. 1.632653061 + -1.632653061 + x = -1.741523171 + -1.632653061 Combine like terms: 1.632653061 + -1.632653061 = 0.000000000 0.000000000 + x = -1.741523171 + -1.632653061 x = -1.741523171 + -1.632653061 Combine like terms: -1.741523171 + -1.632653061 = -3.374176232 x = -3.374176232 Simplifying x = -3.374176232

Solution

The solution to the problem is based on the solutions from the subproblems. x = {0.10887011, -3.374176232}

See similar equations:

| 19=16t^2 | | 8x-(5x-11)=35 | | 3-6(2-3t)=t-5 | | 3.1x-12.82=6.4 | | h=1/8-f-g+k | | 2x-6+x+7=25 | | 12x+8x+t-7= | | 6x-(-4x+3)=7x-2-6-x-3 | | -3p+7=6-(12p+4) | | 2x-5=x+13 | | 6x+5=(x-19) | | a+x=2*a*x+0.5 | | -12(x-y)= | | 5x=15/8 | | 7+3t/4=-t/3 | | 8-4(2)= | | 16/3=x-12/14 | | x^4-2x^2+100=0 | | 1w+9=75 | | 2x/3=28/6 | | 2x+3x+5=30 | | C=383.2(1-.05) | | 6*x^2+11*x-30=0 | | 9y^2-6y+135=0 | | 2w(.5)+9=75 | | (-2t-t^2)/(4-t) | | ((X^2-22)/(x-3))+6=0 | | 9(11-2x)=-27 | | 8[6-(-8x-2)]=576x+192 | | (3w+2)(w-5)=12w+8 | | 2w+9=75 | | (3w+2)(x-5)=12x+8 |

Equations solver categories